Optimizing Image Steganography using Particle Swarm Optimization Algorithm
نویسندگان
چکیده
منابع مشابه
Optimizing Image Steganography using Particle Swarm Optimization Algorithm
Image Steganography is the computing field of hiding information from a source into a target image in a way that it becomes almost imperceptible from one’s eyes. Despite the high capacity of hiding information, the usual Least Significant Bit (LSB) techniques could be easily discovered. In order to hide information in more significant bits, the target image should be optimized. In this paper, i...
متن کاملHighly Secured Image Steganography Using Particle Swarm Optimization
Steganography is the art and science of concealing secret information in plain sight without being noticed within an innocent media so as not to arouse an eavesdropper’s suspicion and also it can be securely transmitted through network. In this paper novel steganography method based on Particle Swam Optimization (PSO) algorithm is adopted for hiding secret information with good invisibility, hi...
متن کاملAn approach to Improve Particle Swarm Optimization Algorithm Using CUDA
The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...
متن کاملISOGEOMETRIC STRUCTURAL SHAPE OPTIMIZATION USING PARTICLE SWARM ALGORITHM
One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the a...
متن کاملOptimizing question answering systems by Accelerated Particle Swarm Optimization (APSO)
One of the most important research areas in natural language processing is Question Answering Systems (QASs). Existing search engines, with Google at the top, have many remarkable capabilities. But there is a basic limitation (search engines do not have deduction capability), a capability which a QAS is expected to have. In this perspective, a search engine may be viewed as a semi-mechanized QA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2017
ISSN: 0975-8887
DOI: 10.5120/ijca2017913686